Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.501
Filtrar
1.
Plant Sci ; 343: 112071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508495

RESUMO

The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Receptores Mitogênicos/genética , Espécies Reativas de Oxigênio/metabolismo , ATPases Translocadoras de Prótons/genética , Pseudomonas syringae/fisiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
J Rheumatol ; 51(2): 130-133, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302188

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is one of the most common and prognostic organ manifestations of RA. Therefore, to allow effective treatment, it is of crucial importance to diagnose RA-ILD at the earliest possible stage. So far, the gold standard of early detection has been high-resolution computed tomography (HRCT) of the lungs. This procedure involves considerable radiation exposure for the patient and is therefore unsuitable as a routine screening measure for ethical reasons. Here, we propose the analysis of characteristic gene expression patterns as a biomarker to aid in the early detection and initiation of appropriate, possibly antifibrotic, therapy. METHODS: To investigate unique molecular patterns of RA-ILD, whole blood samples were taken from 12 female patients with RA-ILD (n = 7) or RA (n = 5). The RNA was extracted, sequenced by RNA-Seq, and analyzed for characteristic differences in the gene expression patterns between patients with RA-ILD and those with RA without ILD. RESULTS: The differential gene expression analysis revealed 9 significantly upregulated genes in RA-ILD compared to RA without ILD: arginase 1 (ARG1), thymidylate synthetase (TYMS), sortilin 1 (SORT1), marker of proliferation Ki-67 (MKI67), olfactomedin 4 (OLFM4), baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5), membrane spanning 4-domains A4A (MS4A4A), C-type lectin domain family 12 member A (CLEC12A), and the long intergenic nonprotein coding RNA (LINC02967). CONCLUSION: All gene products of these genes (except for LINC02967) are known from the literature to be involved in the pathogenesis of fibrosis. Further, for some, a contribution to the development of pulmonary fibrosis has even been demonstrated in experimental studies. Therefore, the results presented here provide an encouraging perspective for using specific gene expression patterns as biomarkers for the early detection and differential diagnosis of RA-ILD as a routine screening test.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Feminino , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/genética , Biomarcadores , Perfilação da Expressão Gênica , RNA , Receptores Mitogênicos , Lectinas Tipo C
3.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
4.
Matrix Biol ; 125: 31-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081526

RESUMO

Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs.  However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.


Assuntos
Receptor com Domínio Discoidina 2 , Neoplasias , Adulto , Humanos , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores com Domínio Discoidina/genética , Neoplasias/genética , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Microambiente Tumoral
5.
Cell Host Microbe ; 31(12): 2051-2066.e7, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37977141

RESUMO

Pattern-recognition receptors (PRRs) mediate basal resistance to most phytopathogens. However, plant responses can be cell type specific, and the mechanisms governing xylem immunity remain largely unknown. We show that the lectin-receptor-like kinase LORE contributes to xylem basal resistance in Arabidopsis upon infection with Ralstonia solanacearum, a destructive plant pathogen that colonizes the xylem to cause bacterial wilt. Following R. solanacearum infection, LORE is activated by phosphorylation at residue S761, initiating a phosphorelay that activates reactive oxygen species production and cell wall lignification. To prevent prolonged activation of immune signaling, LORE recruits and phosphorylates type 2C protein phosphatase LOPP, which dephosphorylates LORE and attenuates LORE-mediated xylem immunity to maintain immune homeostasis. A LOPP knockout confers resistance against bacterial wilt disease in Arabidopsis and tomatoes without impacting plant growth. Thus, our study reveals a regulatory mechanism in xylem immunity involving the reversible phosphorylation of receptor-like kinases.


Assuntos
Arabidopsis , Receptores Mitogênicos , Fosforilação , Xilema/microbiologia , Lectinas , Doenças das Plantas , Imunidade Vegetal
6.
Cancer Cell ; 41(11): 1871-1891.e6, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802054

RESUMO

Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.


Assuntos
Leucemia Mieloide Aguda , Linfócitos T , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Imunoterapia Adotiva , Células-Tronco Hematopoéticas , Receptores Mitogênicos/metabolismo , Lectinas Tipo C
7.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834343

RESUMO

The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD). Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation, differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone regeneration. Based on the above information, we made an effort to outline the advancement of the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their structural, biological activity, and selectivity.


Assuntos
Osteogênese , Receptores Mitogênicos , Receptores com Domínio Discoidina , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/metabolismo
8.
BMC Plant Biol ; 23(1): 294, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264342

RESUMO

BACKGROUND: Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS: Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION: We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lectinas/genética , Lectinas/metabolismo , Resistência à Doença/fisiologia , Folhas de Planta/metabolismo , Mutação , Proteínas de Transporte/genética , Fenótipo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Pseudomonas syringae/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
9.
Immun Inflamm Dis ; 11(4): e836, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102643

RESUMO

INTRODUCTION: Behçet syndrome (BS) is a chronic, multisystemic inflammatory condition with unanswered questions regarding its pathogenesis and rational therapeutics. A microarray-based comparative transcriptomic analysis was performed to elucidate the molecular mechanisms of BS and identify any potential therapeutic targets. METHODS: Twenty-nine BS patients (B) and 15 age and sex-matched control subjects (C) were recruited. Patients were grouped as mucocutaneous (M), ocular (O), and vascular (V) according to their clinical phenotypes. GeneChip Human Genome U133 Plus 2.0 arrays were used for expression profiling on peripheral blood samples of the patients and the control subjects. Following documentation of the differentially expressed gene (DEG) sets, the data were further evaluated with bioinformatics analysis, visualization, and enrichment tools. Validation of the microarray data was performed using quantitative reverse transcriptase polymerase chain reaction. RESULTS: When p ≤ 0.05 and fold change ≥2.0 were chosen, the following numbers of DEGs were obtained; B versus C: 28, M versus C: 20, O versus C: 8, V versus C: 555, M versus O: 6, M versus V: 324, O versus V: 142. Venn diagram analysis indicated only two genes, CLEC12A and IFI27, in the intersection of M versus C ∩ O versus C ∩ V versus C. Another noteworthy gene appeared as CLC in the DEG sets. Cluster analyses successfully clustered distinct clinical phenotypes of BS. While innate immunity-related processes were enriched in the M group, adaptive immunity-specific processes were significantly enriched in the O and V groups. CONCLUSIONS: Distinct clinical phenotypes of BS patients displayed distinct expression profiles. In Turkish BS patients, expression differences regarding the genes CLEC12A, IFI27, and CLC seemed to be operative in the disease pathogenesis. Based on these findings, future research should consider the immunogenetic heterogeneity of BS clinical phenotypes. Two anti-inflammatory genes, namely CLEC12A and CLC, may be valuable as therapeutic targets and may also help design an experimental model in BS.


Assuntos
Síndrome de Behçet , Humanos , Síndrome de Behçet/genética , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Fenótipo , Receptores Mitogênicos/genética
10.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103588

RESUMO

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animais , Arabidopsis/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Lectinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Tylenchoidea/fisiologia , Solanum lycopersicum/genética , Receptores Mitogênicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Doenças das Plantas/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
Malays J Pathol ; 45(1): 65-76, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119247

RESUMO

INTRODUCTION: Acute myeloid leukaemia (AML) is a heterogeneous malignant disease with a high degree of treatment failure using chemotherapy. Leukaemia stem cells (LSCs) are CD34+CD38- early progenitors associated with poor prognosis in AML. A unique LSC phenotype that excludes rare normal haematopoietic stem cells (HSC) is still elusive. This study aimed to determine expression of selected potential LSC markers in normal and leukaemic myeloid cells and correlate prognosis in AML patients. MATERIALS AND METHODS: Flow cytometry and RT-qPCR measured expressions of ALDH, IL3RA/CD123, CLEC12A/CLL-1/CD371, HOXA3 and ENPP4. Normal cord blood (n=3) and blood monocytes (n=5) represented HSC and mature cells, respectively. Myeloid leukaemia cell lines (THP-1, KG-1a, K562 and HL-60) represented progenitor cells at various stages of maturation. AML samples included chemo-resistant (n=8), early relapse (n=2) and late relapse (n=18). RESULTS: Combining protein/gene expressions, CD34+CD38- was a feature of immature cells seen in cord blood, KG-1a, and K562 but not more mature cells (blood monocytes and HL-60). Normal cells expressed CD371 while mature cells (blood monocytes and HL-60) lacked CD123. ENPP4 was not expressed on normal cells while HOXA3 was expressed only on cord blood and THP-1. In AML, CD123, HOXA3, ENPP4 (but not CD371) were significantly increased in the CD34+CD38- fraction of chemo-resistant patients while ALDH was associated with chemo-resistance. CONCLUSION: CD34+CD38- presented an immature phenotype and with ALDH were associated with poor prognosis. CD123, HOXA3 and ENPP4 further enriched the LSC population. ENPP4 has not been reported and has the advantage of not being expressed on HSC and normal monocytes.


Assuntos
Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/uso terapêutico , Leucemia Mieloide Aguda/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Antígenos CD34/metabolismo , Antígenos CD34/uso terapêutico , Recidiva , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Mitogênicos/metabolismo , Receptores Mitogênicos/uso terapêutico , Lectinas Tipo C/metabolismo , Lectinas Tipo C/uso terapêutico , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêutico
12.
Eur Rev Med Pharmacol Sci ; 27(5): 2027-2046, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930502

RESUMO

OBJECTIVE: The liver is a unique organ containing large populations of immune cells. Immunotherapy for liver cancer is a promising yet particularly challenging method. Therefore, it harbors great significance for the identification of immune-related subtypes and the potential therapeutic targets for hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Firstly, we classified the HCC samples downloaded from the dataset of Cancer Genome Atlas (TCGA) into two clusters based on the immune cell infiltration. Thereafter, we identified the significant module and regulatory factors using the weighted gene co-expression network analysis (WGCNA). The immune competence of the regulatory factors was delineated through the ESTIMATE algorithm, the analysis of the tumor microenvironment, and pan-cancer analysis. In the single-cell RNA sequencing analysis, we further explored the immune competence of regulatory factors. We also collected the potential drugs targeting the regulatory factors. In addition, we constructed lncRNA-miRNA-mRNA interaction regulatory networks. Finally, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to verify the protein expression of regulatory genes in HCC cell lines and tissues. RESULTS: According to the immune cell infiltration, two immune-related subtypes-cluster 1 and cluster 2-were found. Patients in cluster 2 had a more significant immune infiltration than in cluster 1. Afterward, six significant regulatory genes were identified through WGCNA, and the expression in cluster 2 was high in cluster 1. We performed a comprehensive analysis to clarify the immune signature. The results showed that the six genes had significant immunological competence. Moreover, the expression of the six genes was similar to the subtypes' classification. In the analysis of the prognosis value, patients in cluster 2 had a better prognosis. In addition, the lncRNA in the lncRNA-miRNA-mRNA interaction regulatory networks was located in the nucleus and cytoplasm. In the single-cell RNA sequencing analysis, the six genes were related to the immune cell. We also identified potential drugs for CD6 and CLEC12A, which may provide potential therapeutic drugs. Finally, the regulatory genes were verified in the western blot and quantitative real-time polymerase chain reaction. CONCLUSIONS: The classification into two clusters based on the immune cell infiltration may provide a promising prospect for HCC through immunotherapy. The six regulatory genes may be potential therapeutic targets in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , Imunoterapia , Biomarcadores , MicroRNAs/genética , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Receptores Mitogênicos , Lectinas Tipo C
13.
Sci Rep ; 13(1): 4388, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928077

RESUMO

In order to identify biomarkers for earlier prediction of COVID-19 outcome, we collected blood samples from patients with fatal outcomes (non-survivors) and with positive clinical outcomes (survivors) at ICU admission and after seven days. COVID-19 survivors and non-survivors showed significantly different transcript levels for 93 genes in whole blood already at ICU admission as revealed by RNA-Seq. These differences became even more pronounced at day 7, resulting in 290 differentially expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For validation, we designed an RT-qPCR assay for C-type lectin domain family 12 member A (CLEC12A) and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate between survivors and non-survivors at both time points. Using our combined RT-qPCR assay we examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% CI = 0.814-1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination (AUROC = 0.403, 95% CI = 0.108-0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451-0.951) at day 0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising approach for early risk stratification of severely ill COVID-19 patients.


Assuntos
Acetilcolinesterase , COVID-19 , Lectinas Tipo C , Humanos , Biomarcadores , COVID-19/genética , Estado Terminal , Unidades de Terapia Intensiva , Lectinas Tipo C/genética , Escores de Disfunção Orgânica , Prognóstico , Receptores Mitogênicos , Estudos Retrospectivos , Medição de Risco , Curva ROC
14.
Biochem Biophys Res Commun ; 649: 47-54, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745969

RESUMO

Chronic systemic inflammation leads to sever disorders and diseases. It is of great importance to explore novel target for effective treatment. Discoidin domain receptor 2 (Ddr2) is a member of receptor tyrosine kinase (RTK) family and is implicated in skeletal and fat hemostasis. However, the role of Ddr2 in myeloid cells remains obscure. In this study, we conditionally deleted Ddr2 in myeloid lineage cells to generate cKO mice to investigate the role of Ddr2 in myeloid lineage cells. We found that cKO mice exhibited more severe inflammation both in collagen antibody-induced arthritis (CAIA) and high-fat diet (HFD)-induced obesity, indicating the protective role of Ddr2 against inflammation. Mechanistically, Ddr2 promotes macrophage repolarization from the M1 to M2 phenotype, and protect against systemic inflammation. Our study reveals for the first time that Ddr2 modulates macrophage repolarization and plays critical roles in macrophage-mediated inflammation, providing potential target for the intervention of inflammation and related diseases.


Assuntos
Artrite , Receptor com Domínio Discoidina 2 , Animais , Camundongos , Dieta Hiperlipídica , Receptor com Domínio Discoidina 2/genética , Receptores com Domínio Discoidina , Inflamação , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética
15.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835297

RESUMO

Legionella pneumophila is an intracellular pathogen that can cause severe pneumonia after the inhalation of contaminated aerosols and replication in alveolar macrophages. Several pattern recognition receptors (PRRs) have been identified that contribute to the recognition of L. pneumophila by the innate immune system. However, the function of the C-type lectin receptors (CLRs), which are mainly expressed by macrophages and other myeloid cells, remains largely unexplored. Here, we used a library of CLR-Fc fusion proteins to search for CLRs that can bind the bacterium and identified the specific binding of CLEC12A to L. pneumophila. Subsequent infection experiments in human and murine macrophages, however, did not provide evidence for a substantial role of CLEC12A in controlling innate immune responses to the bacterium. Consistently, antibacterial and inflammatory responses to Legionella lung infection were not significantly influenced by CLEC12A deficiency. Collectively, CLEC12A is able to bind to L. pneumophila-derived ligands but does not appear to play a major role in the innate defense against L. pneumophila.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Lectinas Tipo C , Legionella pneumophila , Doença dos Legionários , Receptores Mitogênicos , Animais , Humanos , Camundongos , Lectinas Tipo C/metabolismo , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Mitogênicos/imunologia
16.
Mini Rev Med Chem ; 23(15): 1507-1513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698236

RESUMO

Discoidin domain receptor (DDR) 1, a collagen binding receptor kinase, is an intensively researched therapeutic target for cancer, fibrosis and other diseases. The majority of early known DDR1 inhibitors targeted the ATP binding pocket of this enzyme that shares structural similarities with other kinase pockets across the biological system. This structural similarity of DDR1 kinase with other protein kinases often leads to "off target "toxicity issues. Understanding of uniqueness in DDR:ATP-phosphate-binding loop (P-loop), DNA encoded library screen, structure-guided optimization studies, and machine learning drug design platforms that come under the umbrella of artificial intelligence has led to the discovery of a new array of inhibitors that are highly selective for DDR1 over DDR2 and other similar kinases. Most of the drug discovery platforms concentrated on the ATP binding region of DDR1 kinase and never looked beyond this region for novel therapeutic options. Recent findings have disclosed the kinase-independent functions of DDR1 in immune exclusion, which resides in the extracellular collagen-binding domain, thus opening avenues for the development of inhibitors that veer away from targeting ATP binding pockets. This recent understanding of the functional modalities of DDR1 opens the complexity of targeting this transmembrane protein as per its functional prominence in the respective disease and thus demands the development of specific novel therapeutics. The perspective gives a short overview of recent developments of DDR1 inhibitors with the aid of the latest technologies, future directions for therapeutic development, and possibility of combinational therapeutic treatments to completely disengage functions of DDR1.


Assuntos
Receptor com Domínio Discoidina 1 , Receptores Proteína Tirosina Quinases , Receptores com Domínio Discoidina , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Inteligência Artificial , Colágeno/química , Colágeno/metabolismo , DNA , Trifosfato de Adenosina
17.
COPD ; 20(1): 44-54, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36655999

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes obstructed airflow from the lungs. DNA methylation can regulate gene expression. Understanding the potential molecular mechanism of COPD is of great importance. The aim of this study was to find differentially methylated/expressed genes in COPD. DNA methylation and gene expression profiles in COPD were downloaded from the dataset, followed by functional analysis of differentially-methylated/expressed genes. The potential diagnostic value of these differentially-methylated/expressed genes was determined by receiver operating characteristic (ROC) analysis. Expression validation of differentially-methylated/expressed genes was performed by in vitro experiment and extra online datasets. Totally, 81 hypermethylated-low expression genes and 121 hypomethylated-high expression genes were found in COPD. Among which, 9 core hypermethylated-low expression genes (CD247, CCR7, CD5, IKZF1, SLAMF1, IL2RB, CD3E, CD7 and IL7R) and 8 core hypomethylated-high expression genes (TREM1, AQP9, CD300LF, CLEC12A, NOD2, IRAK3, NLRP3 and LYZ) were identified in the protein-protein interaction (PPI) network. Moreover, these genes had a potential diagnostic utility for COPD. Some signaling pathways were identified in COPD, including T cell receptor signaling pathway, cytokine-cytokine receptor interaction, hematopoietic cell lineage, HTLV-I infection, endocytosis and Jak-STAT signaling pathway. In conclusion, differentially-methylated/expressed genes and involved signaling pathways are likely to be associated with the process of COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Redes Reguladoras de Genes , Metilação de DNA , Mapas de Interação de Proteínas/genética , Pulmão , Perfilação da Expressão Gênica , Receptores Mitogênicos/genética , Lectinas Tipo C/genética
18.
J Integr Plant Biol ; 65(5): 1312-1327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36633200

RESUMO

Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Imunidade/genética , Imunidade/imunologia , Lectinas/genética , Lectinas/imunologia , Lectinas/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Mitogênicos/metabolismo
19.
Tuberculosis (Edinb) ; 138: 102294, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542980

RESUMO

Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Animais , Humanos , Camundongos , Parede Celular/metabolismo , Imunidade Inata , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ácidos Micólicos/metabolismo , Receptores Mitogênicos/metabolismo
20.
Bioorg Chem ; 130: 106215, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384067

RESUMO

Discoidin domain receptors (DDRs) are one of the less explored targets for the treatment of cancer which belong to receptor tyrosine kinases family. Discoidin domain receptors (DDRs) are a collagen-activated receptor tyrosine kinase and essential for controlling cellular functions like proliferation, morphogenesis, adhesion, differentiation, invasion, matrix remodeling, and migration. Although there are many targets and their inhibitors are reported which treat cancer. But most of drugs were amalgamated with moderate to severe side effects. This results in untreated cancerous cells. One of the reasons that cancer is considered challenging to treat because the targets were mutating rapidly and the inhibitor become less potent. The target identification is a tedious task for the researchers from the early 1990 s till date. When it comes to cancer, there has not been any magical stick to treat it undisputedly. Therefore, need for discovery of new receptor may helpful to overcome these difficulties. The development of DDR inhibitors has received a lot of attention ever since the target was discovered. In this review we have reported the development of most promising DDR1 and DDR2 small molecule inhibitors from the perspective of medicinal chemistry. We have also discussed about the clinical trials, recent patents, selectivity biological activity, and structure-activity relationship (SAR) of DDR1 and DDR2 inhibitors.


Assuntos
Antineoplásicos , Receptores com Domínio Discoidina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores com Domínio Discoidina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...